カリフォルニア大学、イリノイ大学など 海外大学との提携を締結

posted in: Media, Research

情報経営イノベーション専門職大学(東京都墨田区、学長 中村伊知哉、http://www.i-u.ac.jp、以下「iU」)は、このほど海外大学との提携の第一段階として、米国カリフォルニア大学サン・ディエゴ校(The University of California, San Diego (UCSD)、米国イリノイ大学シカゴ校(The University of Illinois at Chicago Campus)、英国シェーフィールド大学(The University of Sheffield)、マレーシアラッフルズ大学(Raffles University Malaysia )、シンガポール国立大学(National University of Singapore)、英国ニコラ・テスラ大学院大学 (Nikola Tesla Graduate School)、アフリカアクレ連邦技術大学(The Federal University of Technology、Akure、 Ondo State、 Nigeria: FUTA)の7校との包括的提携に合意しました。

世界大学構想について

iUは今後も国内外の主要大学と積極的に提携し、iUを中心とした、ITとビジネスの世界に向けての、知的ハブとしての世界大学、「世界大学構想」の実現を目指します。
具体的には学生、教員の交流や、共同研究の実施に加え、以下を目的としています。
(1) 提携大学での授業が受けられ、卒業単位として認められるパスポート制度
(2) 戦略特区の共同利用による新産業、新製品の共同開発研究
(3) 海外留学生へのビザ特区の設置
(4) その他eスポーツ、超教育、超スポーツ、アニメ、オタクなどの国際的共同研究
(5) 起業支援、及び人材育成

今後について

今般の海外大学との提携は、iUが提唱する「世界大学構想」の一貫として推進します。
各校との提携により、今後iUは、それぞれの大学の学生及び教員の交流を通じ、国際的共同講義の開発・開催、各種IT技術に関する国際共同実験・実装、そして国際的共同研究などを、各大学と、またこの活動を支援する内外著名企業各社とともに、展開してまいります。

<大学概要>

■大学・学部学科名
・大学名:「情報経営イノベーション専門職大学」 ※愛称「iU(あいゆー)」
・学部名:情報経営イノベーション学部 情報経営イノベーション学科

■学長 

中村伊知哉(なかむらいちや)
<職歴>
1984年、ロックバンド少年ナイフのディレクターを経て旧郵政省入省
1998年、MITメディアラボ客員教授
2002年、スタンフォード日本センター研究所長
2006年、慶應義塾大学大学院教授
2020年4月より、情報経営イノベーション専門職大学学長に就任

■設置概要
・本校舎:東京都墨田区文花1-18-13
・サテライトオフィス:東京都港区海岸1-7-1 東京ポートシティ竹芝 オフィスタワー8階・学生数:1期生230名
・専任教員数:28名

■教育理念
「変化を楽しみ、自ら学び、革新を創造する。」

■基本構想
ICT×ビジネス×グローバルコミュニケーション + 全員インターンシップ×全員起業×オンライン学習
・ICT教育:電子学園が積み上げた基盤により、プログラミング・AI・ビッグデータなど、幅広いICTスキル教育を展開
・ビジネス創造教育:実務家教員によるビジネススキル教育を実施、ビジネス教養、ビジネスプラン策定力などを身につける
・使える英語・グローバル教育:国際舞台で仕事をするために必要な英語力を磨く教育と留学生の受け入れにより国際性も強化
・インターンシップとリアルプロジェクト:1人640時間のインターン、実ビジネスの中でハンズオンのリアルプロジェクト教育を実施
・全員起業:希望者全員に対し、在学中に起業にチャレンジできるサポート体制
・オンラインを活用した授業サポート:『いつでもどこからでも学ぶことができる』をキーワードに、自ら積極的に学ぶための環境の充実

■育成人材像
・ICTを活用する様々な業界・団体において課題を解決し、新たな商品・サービスやビジネスを生み出すことのできる人材
・ICTを活用し新たな商品・サービスやビジネスを生み出すことで、国際社会と地域社会の産業発展に貢献する起業家

【本リリースに関するお問い合わせ先】

iU 情報経営イノベーション専門職大学 TEL:03-5655-15555  E-mail:info@i-u.ac.jp

iU announces partnership with 7 international universities.

posted in: Media, Research

Professional University of Information and Management for Innovation (Sumida-ku, Tokyo, President Ichiya Nakamura, http://www.iu.ac.jp, “iU”) announces that since opening the University on April 1st 2020, it already has reached a comprehensive partnership agreement with global seven prominent schools such as The University of California, San Diego (UCSD), The University of Illinois at Chicago (UIC), The University of Sheffield, Raffles University Malaysia, National University of Singapore, Nikola Tesla Graduate School in UK, and the Federal University of Technology, Africa (Akure, Ondo State, Nigeria: FUTA). Many more international collaborations will follow.

iU will continue to actively collaborate with major universities in Japan and overseas, aiming to realize the “World University Concept”, a world university as an intellectual hub for the IT and business world centered around iU.

Specifically, in addition to the exchange of students and faculty members and the implementation of joint research, the objectives are as follows:
(1) A “passport” system that allows classes at partner universities and is recognized as a graduation unit
(2) Joint development research of new industries and new products with joint use of strategic special zones
(3) Establishment of special visa zone for international students
(4) Other international collaborative research on eSports, super education, super sports, anime, otaku, etc.
(5) Entrepreneurship support and human resource development

This alliance with overseas universities is being promoted as part of the “World University Concept” advocated by iU. Through collaboration with each school, iU will be able to develop and hold international joint lectures, international joint experiments and implementation of various IT technologies, and international joint research through exchanges of students and teachers of each university. iU will work with universities and other well-known companies in Japan and overseas that support this activity.

The Importance of Studying Marketing for Social Media

In today’s digital age, social media has become an integral part of our lives. Platforms like Facebook, Instagram, Twitter, and LinkedIn have transformed the way we connect, communicate, and consume information. For businesses, social media has opened up a vast array of opportunities to reach and engage with their target audience. However, to make the most of these opportunities, it is crucial to understand the fundamentals of marketing for social media.

The Power of Social Media Marketing

Social media marketing offers businesses a unique way to promote their products and services, build brand awareness, and foster customer loyalty. With billions of active users across various platforms, social media provides an extensive reach that traditional marketing methods often struggle to achieve. By leveraging the power of social media, businesses can target specific demographics, interact with customers in real-time, and gather valuable insights to refine their marketing strategies.

Why Study Marketing for Social Media?

Studying marketing for social media goes beyond simply posting content and gaining followers. It involves understanding the intricacies of each platform, analyzing data to measure performance, and implementing strategies that yield tangible results. Here are a few reasons why studying marketing for social media is essential:

  • Effective Targeting: A solid understanding of marketing principles allows businesses to target their ideal audience accurately. By identifying demographics, interests, and behaviors, marketers can create highly targeted campaigns that resonate with their potential customers.
  • Increased Engagement: Engaging with your audience is key to building a loyal following. Through proper marketing techniques, businesses can encourage likes, comments, shares, and other forms of engagement, leading to increased brand visibility and reach.
  • Brand Reputation Management: Social media platforms give businesses an opportunity to monitor their online reputation closely. By responding to customer feedback, addressing concerns, and showcasing their brand values, businesses can shape a positive brand image and maintain customer trust.
  • Measurable Results: Marketing for social media allows businesses to track and measure their campaign performance effectively. Analyzing metrics such as reach, engagement, conversions, and ROI provides valuable insights for optimizing marketing strategies and maximizing return on investment.

Professor Adrian David Cheok is appointed Visiting Professor of University of Novi Sad-Serbia, on Technical faculty “Mihailo Pupin”, Serbia

posted in: Research

“MIHAJLO PUPIN” TECHNICAL FACULTY IN ZRENJANIN. http://www.tfzr.uns.ac.rs/en/

Introduction to Synthetic Urine Kits

The use of synthetic urine kits has become more popular due to their numerous applications, which range between passing tests for drugs to conducting scientific tests. Understanding the definition of synthetic urine and how it functions is crucial for anyone who are considering using it.

Comprehending Synthetic Urine

Synthetic urine is an laboratory-made liquid that closely matches what is found in urine in humans. It is typically composed of water, urea and creatinine, uric acids, as well as other elements found in urine that is natural. The aim in making synthetic urine is mimic authentic urine for different tests.

Application and Purpose

The main purpose of these kits of synthetic urine is that they replace authentic urine in situations when it’s not feasible or ethical to use genuine urine. They are typically utilized for passing urine tests, calibrating testing equipment, and for carrying out scientific research that requires urine samples.

Different types of synthetic urine kits

There are two primary kinds of urine kits made from synthetic materials which are powdered and pre-mixed. Kits pre-mixed come ready-to-use powdered ones require mixing in water prior to applying. Each kind has advantages and drawbacks, based on the requirements of the user as well as preferences.

How to Utilize synthetic urine kits

Utilizing synthetic urine kits requires careful preparation and adherence to the specific instructions that come with the kit. The user must be sure to maintain the proper temperature and timing as well as handling to ensure exact results during the testing.

Things to Consider when selecting a Synthetic Urine Kit

When deciding on the best urine test kit made of synthetic there are several aspects to be considered such as the reputation of the company as well as the quality of the ingredients, as well as the product’s shelf time. Selecting a trustworthy kit improves the chance of getting positive test results.

Legal Constraints

Although synthetic urine isn’t legal but the use of it in order to cheat at drug tests could have grave legal ramifications. A number of states have laws to punish those who attempt to cheat drug screenings by using synthetic urine.

Efficiency of Synthetic Urine Kits

The efficacy of urine tests using synthetic substances varies dependent on a number of factors including its quality, its proper use, and accuracy of the test procedures. While some people clear drug tests with synthetic urine, other users might encounter difficulties or problems.

Security Precautions

It’s crucial to use synthetic urine kits with diligence and observe safety measures to prevent contamination and altering the product. The proper storage conditions must be maintained to ensure the quality of the product until it’s time to use.

Alternate Synthetic Urine Kits

Apart from the synthetic urine tests, you can also find other ways to pass drug tests, such as detox drinks as well as home remedies. However, the efficacy of these methods may differ and they might not always deliver reliable results.

Implications for Ethics

The use of synthetic urine can raise ethical questions, particularly in relation to the integrity of drug testing and compliance with workplace policies. The testing facility and the employer need to be mindful of privacy issues while balancing the requirement for precise and ethical testing procedures.

Adrian David Cheok, Professor of UoL, Invited to Exhibit at Ars Electronica Festival 2017

posted in: Research

Professor Adrian David Cheok, Chair Professor of University of London, has been invited to exhibit at the Ars Electronica Festival 2017. His work, Kissenger, has been selected by the Ars Electronica Festival committee to showcase for 5 days at one of the most prestigious media arts events to be held on 7-11 September 2017 in POSTCITY Linz, Austria.

Ars Electronica Festival is an international festival for Art, Technology & Society offering a distinct platform. Since 1979 it has provided an extraordinary meeting point. Artists, scientists, engineers, researchers and developers from all over the world are welcomed in Linz, to confront a specific, interdisciplinary theme in the context of exhibitions, conferences, workshops and interventions.

The theme of the 2017 Festival is AI –The Other I, ideas circulating here are innovative, radical, and eccentric in the best sense of that term, they influence our everyday, become integrated in our lifestyle and are our future way of life. One part of the exhibition will be dedicated to Artificial Intimacy, a special branch providing futuristic technical visions related to intimacy between humans and machines. Questions such as “Can a human love a robot?”, “Can a robot love a human?” will provoke your thoughts while exploring some of the latest technology in this area. https://www.aec.at/ai/en/artificial-intimacy/

The 5-day event is expected to welcome audiences of over 85,000. Ars Electronica Festival is supported by a prestigious list of 382 associates, including Intel, mobility partner Daimler, Animation Festival sponsor Maxon, scientific mentor MIT Media Lab and BioAustria. They make it possible for Ars Electronica to stage a festival characterized by huge dimensions and superb quality.

More information about the festival can be found here: https://www.aec.at/festival/en/

PRESS RELEASE: Electric Smell Machine for Internet & Virtual Smell

posted in: Research

Date: August 7, 2017
Adrian David Cheok, Kasun Karunanayaka, Surina Hariri, Hanis Camelia, and Sharon Kalu Ufere Imagineering Institute, Iskandar Puteri, Malaysia & City, University of London,UK.
Email: contact@imagineeringinstitute.org
Phone: +607 509 6568
Fax: +607 509 6713

Here we are excited to introduce the world’s first computer controlled digital device developed to stimulate olfactory receptor neurons with the aim of producing smell sensations purely using electrical pulses. Using this device, now we can easily stimulate the various areas of nasal cavity with different kinds of electric pulses. During the initial user experiments, some participants experienced smell sensations including floral, fruity, chemical, and woody. In addition, we have observed a dif- ference in the ability of smelling odorants before and after the electrical stimulation. These results suggest that this technology could be enhanced to artificially create and modify smell sensations. By conducting more experiments with human subjects, we are expecting to uncover the patterns of electrical stimulations, that can effectively generate, modify, and recall smell sensations. This invention can lead to internet and virtual reality digital smell.

Figure 1: Concept of stimulating human olfactory receptor neurons using electric pulses.

To date, almost all smell regeneration methods used in both academia and industry are based on chemicals. These methods have several limitations such as being expensive for long term use, complex, need of routine maintenance, require refilling, less controllability, and non-uniform distribution in the air. More importantly, these chemical based smells cannot be transmitted over the digital networks and regenerate remotely, as we do for the visual and auditory data. Therefore, discovering a method to produce smell sensations without us- ing chemical odorants is a necessity for digitizing the sense of smell. Our concept is illustrated in the Figure 1, which is electrically stimulating the olfactory receptor neurons (ORN) and study whether this approach can produce or modify smell sensations. During a medical experiment in 1973, electrical stimulation of olfactory receptors reported some smell sensations including almond, bitter almond, and vanilla [1]. However, three other similar experiments that used electrical stimulation failed to reproduce any smell sensations [2, 3, 4]. Therefore, finding a proper method to electrically reproduce smell sensations was still undiscovered.

Figure 2: The digital olfactory receptor stimulation device: It has a current controller circuit, endoscope camera, a pair of silver electrodes, a microcontroller, a power supply, a low current multimeter, and a laptop.

Our approach is different from the previous research mentioned above. Our main objective is to develop a controllable and repeatable digital technology, a device that connects to computers and be easily able to programmed and controlled. Also this device needs to generate electric pulses of different frequencies, cur- rents, pulse widths and stimulation times. To provide more stimulation possibilities, we wanted this device to be capable of stimulating diverse sites at the ventral surface of the inferior, middle, and superior nasal concha. Fig. 2 shows the computer controlled digital device we have developed to stimulate olfactory receptors. The amount of current output by the circuit can be controlled using one of the five push buttons shown in Figure 2 and the respective LED near the push button will lights up after the selection. The frequency of the stimulation pulses and stimulation time is controlled by the microcontroller program. It is possible to vary the stimulation frequency from 0Hz to 33kHz and pulse width using the programming. The pair of silver electrodes combined with the endoscopic camera was used to stimulate olfactory receptor neurons, and during the stimulation, one electrode is configured as the positive and the other electrode as the ground. Fig 3 and Fig 4 shows testing our device with human subjects.

Figure 3: This image shows the user study setup and stimulating the nasal cavity targeting the middle and superior concha regions using the device

During our first user study, we have stimulated the 30 subjects using 1mA to 5mA range with frequencies 2Hz, 10Hz, 70Hz, and 180Hz. 1mA at 10Hz and 1mA at 70Hz were the stimulation parameters which gave most prominent results for the smell related responses. Electrical stimulation with 1mA and 70Hz induced the highest odor perceptions. 27% of the participants reported the perceived fragrant and chemical sensa- tions. Other smell sensations that are reported for include, 20% fruity, 20% sweet, 17% tosted and nutty, 10% minty, and 13% woody. Stimulation parameters 1mA/10Hz reported 17% fragrant, 27% sweet 27%, chemical 10%, woody 10%. Meanwhile, results for the 4mA/70Hz reported 82% for pain and 64% reported pressure sensations. We have also probed the effect of electrical stimulation on the nose after stimulation. Therefore, we asked participants to repeat the sniffing of known odorants immediately after stimulation and rate the intensity. Most of the participants reported higher intensity after stimulation. This showed that the electrical stimulation increased the intensity of the odorants in the nose.

Figure 4: This image shows a person is testing the Electric Smell Interface in the lab environment

We are planning to extend this user experiment with more number of participants. The effects of the differ- ent electrical stimulation parameters such as frequency, current, and stimulation period will be more closely studied in future. By analyzing the results, we plan to identify various stimulation patterns that can produce different smell sensations. If the electrical stimulation of olfactory receptors effectively produce smell sen- sations, it will revolutionize the field of communication. Multisensory communication is currently limited to text, audio and video contents. Digitizing touch sense are already been achieved experimentally in the research level and will be embedded to daily communication near future. If the digitization of smell be- comes possible it will paved the way for sensing, communicating and reproducing flavor sensations over the internet. This will create more applications in the fields such as human computer interaction, virtual reality, telepresence, and internet shopping.

References

1.Uziel, A.: Stimulation of human olfactory neuro-epithelium by long-term continuous electrical currents. Journal de physiologie 66(4) (1973) 409422

2.Weiss, T., Shushan, S., Ravia, A., Hahamy, A., Secundo, L., Weissbrod, A., Ben-Yakov, A., Holtzman, Y., Cohen- Atsmoni, S., Roth, Y., et al.: From nose to brain: Un-sensed electrical currents applied in the nose alter activity in deep brain structures. Cerebral Cortex (2016)

3.Straschill, M., Stahl, H., Gorkisch, K.: Effects of electrical stimulation of the human olfactory mucosa.Stereotactic and Functional Neurosurgery 46(5-6) (1984) 286289

4.Ishimaru, T., Shimada, T., Sakumoto, M., Miwa, T., Kimura, Y., Furukawa, M.: Olfactory evoked potential produced by electrical stimulation of the human olfactory mucosa. Chemical senses 22(1) (1997) 7781

Invitation to Contribute to Special Issue “Love and Sex with Robots”

posted in: Research

mti

I recently accepted an invitation to serve as the Guest Editor for a Special Issue of the journal Multimodal Technologies and Interaction on the subject of “Love and Sex with Robots”. It is my pleasure to invite all researchers to submit an article on this topic.

The article may be either a full paper or a communication based on your own research in this area, or may be a focused review article on some aspect of the subject. MTI is an open access, peer-reviewed journal, edited by Professor Adrian David Cheok. You will not be required to pay the usual publication fee (Article Processing Charge) in the first issue of this journal.

All submissions will be subject to peer review. If you plan to submit a review article please provide me with a title and brief description at your earliest convenience, in order to avoid multiple reviews covering the same material.

For more information about the Special Issue, please see: http://www.mdpi.com/journal/mti/special_issues/robots

For information on manuscript preparation and related matters, please see the instructions for authors: http://www.mdpi.com/journal/mti/instructions

Although the deadline for submission of manuscripts to the Special Issue is 1 October 2016, I would appreciate hearing from you in the next few weeks whether you would be willing to submit a contribution.

I saw the weird and it was at the MRS 2016 National Conference

posted in: Research

pl-logo1

Posted by:  on 21 March 2016

I go to enough market research conferences to have seen pretty much every technology for running questionnaires. I’ve seen virtual reality and Google Glasses and all things cool. But the MRSlive conference in London was my very first introduction to the weird and wonderful world of virtual taste, smell, hugs, and kisses. Yes, you read that right.

I stopped by a booth managed by Emma Yann Zhang, a PhD student at the Department of Computer Science at the City University London. She had some pretty awesome stuff to showcase.

kissesAnyone who is a fan of The Big Bang television show will know about the kissing machine that Raj and Howard so weirdly tried out on each other.

But this device is indeed available. Simply press your lips to the white section of the device and your lip motions will be transferred to the person on the other end. The most obvious use for this technology is, of course, as a kissing machine for long distance relationships. Kissing Gramma and Grampa good night will bring warm fuzzies to anyone but what about more commercial opportunities? Imagine being able to shop online and feel the fabric of the shirt or the smoothness of the flooring you’re thinking of buying.

smellNeed more weird? How about a device that lets you digitally transmit smells? This device is currently available for sale on Amazon, and it lets you choose a predetermined scent from your smartphone and have that scent be released from someone else’s smartphone. Chemicals are contained within the white ‘balloon’ and the cartridge would have to be periodically replaced.

Aside from hilariously sending your friends every bad and gross smell you can think of, companies could test new perfumes and colognes, scents of cleaning products, scents of food and beverages, and more to determine which scents are most consumer friendly. And they could test these scents with anyone anywhere in the world without bringing them together in a central location.

hugsAre you feeling blue? Maybe you could a little hug send from this hugging ring. This device is still a prototype but it currently works with haptic technology to give your finger a little buzz anytime your significant other sends one from their smartphone, similar to how your fitness devices buzzes on your write. Right now, it’s a ring but imagine a future where it’s a bracelet or a necklace or a belt.

And once again you can imagine all that could come from it. Perfectly, individually designed massage clothing. I am so in for that!

tasteAnd lastly, but not necessarily most weirdly is a digital tasting device. Simply clip the silver metal section to the end of your tongue and it will deliver electrical currents that replicate certain tastes. Once again, the implications are impressive. Imagine creating flavors for innumerable new food and beverages without actually making the recipes thirty or forty times. Make one recipe of lasagna and then digitally manipulate the variables. Add a little more salt, less salt, more pepper, more oregano, more basil, more celery. Try out every possible minute flavour difference until you find the one that your target group of consumers loves the most. And once again, your target group could be anyone, anywhere in the world.

This technology fascinates me. Today, it is weird and wonderful and cutting edge. It doesn’t always seem relevant to the market research industry until you take the time to brainstorm the potential applications. Ten years from now, just like we do with mobile phones, we will chuckle at how old-fashioned and clunky it is.

For now, I’ll continue to be really impressed. How cool is this stuff!

Source: http://web.peanutlabs.com/i-saw-the-weird-and-it-was-at-the-mrs-2016-national-conference-mrslive-mrx-newmr/

Adrian David Cheok Editor-in-Chief of Multimodal Technologies and Interaction Journal

Adrian David Cheok has been invited to be the Editor-in-Chief of the new journal Multimodal Technologies and Interaction (MTI). 

About MTI

Multimodal Technologies and Interaction (ISSN 2414-4088) is an international, multi/interdisciplinary, open access, peer-reviewed journal which publishes original articles, critical reviews, research notes, and short communications on this subject. MTI focuses on fundamental and applied research dealing with all kinds of technologies that can acquire and/or reproduce unimodal and multimodal digital content that supports interaction (e.g. human–computer, human–robot and animal–computer). Such technologies may produce visual, tactile, sonic, taste, smell, flavor or any other kind of content that can enrich consumer/user experience.

Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible, so that results can be easily reproduced. There is, therefore, no restriction on the length of the papers.

Scope
  • displays/sensors: visual, tactile/haptic, sonic, taste, smell
  • multimodal interaction, interfaces, and communication
  • human–computer and human–robot relations and interaction
  • animal–computer interaction
  • human factors, cognition
  • multimodal perception
  • smart wearable technology
  • psychology and neuroscience
  • digital and sensory marketing
  • enabling, disruptive technologies
  • multimodal science, technology and interfaces
  • theoretical, social and cultural issues
  • design and evaluation
  • content creation, environments processes and methods
  • application domains

For more information or to submit your manuscript to this journal, visit this link http://www.mdpi.com/journal/mti.

1 2 3 4 7